【捷運上的迷你裙】
在捷運上..
突然發現對面坐著一個超甜美的OL..
迷你裙下修長勻稱的雙腿..
要是能偷瞄到一點點..
不知道該有多好..
這樣的情況應該是屢見不鮮了..
且讓我們假設女孩雙膝併攏的點和裙子上緣距離4公分..
而裙擺到小褲褲之間的距離是12公分..
那麼從側面看來..
目標區域和裙子就會形成一個直角三角形ABC..
如果"觀察者"的雙眼E正好在BC線段的延長線上..
那麼B點就會落在他的視野內..
如果我們做一條過E並垂直於AC線段延長線的直線DE的話..
直角三角形DEC就會和直角三角形ABC相似..
在△ABC中..
AB的長度是AC的三分之一..
因此在ABC裡..
DE的長度也應該是DC的三分之一..
又因為DC是觀察者的眼睛與裙子之間的水平距離..
假設這個距離是1.6公尺..
那麼DE的長度(眼睛距離裙擺的高度)X就是53.3公分..
不過一個身高170公分的觀察者在採取普通坐姿時..
他的眼睛與裙擺之間卻會有70公分的差距..
換句話說..
他必須要把頭向下低個17公分..
而且為了達成這個目標..
得要讓屁股向前挺出45公分才行..
這樣的視姦姿勢..
會不被人發現才有鬼..
【樓梯上的短裙】
無論走到哪裡..
百貨公司..捷運車站.
隨時都會看到短裙美女上下樓梯的景象..
看著白皙的雙腿隨著步伐不斷交錯..
心裡不禁暗想..
要是我緊跟在她後面...
一定有機會看到..
跟在短裙美女後面爬樓梯會有好康..
這是粉多人都有的迷思..
不過..
想一窺裙底機密也是有技巧的喔!!
短裙的內部狀況大致就跟下圖(內附一)所示一樣..
一般"觀察者"想看的地方..
其實是半徑10公分的半球體部分..
而裙子則與半球體相切並以向下15公分的剪裁..
巧妙地遮住了觀察者的視線..
從上圖(附二)看來..
直角三角形OPQ和ORQ是全等的..
如果將QR線段(也就是觀察者視線)延長並做出另一個直角三角形TSQ..
那我們可由計算知道它的高是8.3公分..
△TSQ的高是底的0.415倍..
所以..
觀察者如果想看到裙底風光..
最低限度是讓視線的仰角大於角TQS..
也就是高和底的比值要大於0.415倍..
接下來..
我們就要討論△AEQ的問題..
假設觀察者(身高170)眼睛的高度是160公分..
而裙擺高度是80公分..
因為眼睛高度比裙擺高度大80公分..
所以裙擺與眼睛的高度差距(線段AE)..
就比樓梯的高低差距(線段CD)小80公分..
因此直角三角型AEQ的高和底可用以下兩個式子來表示..
高:AE=20×階數-80
底:QA=25×(階數-1)
高和底則須滿足這個式子:AE≧OA×0.415
我們針對不同的階梯差距列一張表:
┌──┬──┬──┬──┬─┬──┬──┬──┬──┐
│階數│ 1 │ 2 │ 3 │4│ 5 │ 6 │ 7 │ 8 │
├──┼──┼──┼──┼─┼──┼──┼──┼──┤
│AE│-60 │-40│-20 │0│ 20 │ 40 │ 60 │ 80 │
├──┼──┼──┼──┼─┼──┼──┼──┼──┤
│QA│ 0 │ 25 │ 50│75│100 │125│150│175 │
├──┼──┼──┼──┼─┼──┼──┼──┼──┤
│比率│ * │-1.6│-0.4│0│0.2│0.32│0.4│0.457│
└──┴──┴──┴──┴─┴──┴──┴──┴──┘
其中AE是負值的情況..
就表示裙擺問至還在眼睛下方..
所以在階梯差距小於4時..
觀察者是完全看不到裙子底下的..
但是..
當階梯數增加到5或6的時候..
喔喔~~~~就快看到啦!!
等到階梯差到了8時..
0.415的視姦障礙也就成功被破解啦!!
當然..
這個差距愈大..視野也就愈寬廣..
不過可以看到的風光也會愈來愈小..
這點請大家可別忘囉!!